Fundamental advances in actinide coordination chemistry are crucial across actinide science to understand and to control actinide behavior. Synthetic approaches to actinide complexes with desirable properties include the preparation of actinide complexes for characterization; advancing actinide materials synthesis using volatile precursors; preparing new actinide complexes with metal-metal bonds; development of complexants for spherically symmetric trivalent and tetravalent actinides; and studying actinide coordination/recognition by naturally occurring ligands and complexes.
A second emphasis examines how f-orbital interactions affect bonding and reactivity.
Research includes inducing f-orbital covalency and evaluating the contribution of covalency to the overall bonding; studying how covalency affects ligand spin density and reactivity; gas-phase chemistry and spectroscopy, including comparisons with condensed-phase chemistry and the effects of covalency and 5f-orbital occupation on reactivity; and how ligand interactions with f-orbitals affect luminescence.
General synthesis of a class of isostructural complexes with lanthanide and actinide bonds to Group 13 elements. [J. Arnold, S. Minasian, et al., J. Am.. Chem. Soc. 131, 13767 (2009)]